

PV-MON-LV/HV

MANUAL (RR-1723) V1.2

RERA SOLUTIONS B.V.

Contents

Risk of electric shock	
Introduction	
Models	4
Mounting	4
Wiring	
Operation	
MODBUS Registers	7
Specifications	8
Contact	g
Appendix A - Dimensions	10
Appendix B - Modbus registers	11
Appendix C - Configurations	12

PV-MON (RR-1723)

This user manual targets the PV-MON (RR-1723). Please read this manual carefully before using the device.

Risk of electric shock

High Voltage Warning

Dangerous voltages can be present within the PV-MON. To avoid injuries, always disconnect power, discharge circuits, and remove external voltage sources before touching components.

Never connect/disconnect PV-systems under load.

Introduction

Congratulations on purchasing the PV-MON. With this DC measurement device, you have a unique high voltage PV monitoring tool.

Overview

The PV-MON is used to measure the DC current and voltage of PV strings. It is equipped with two analog inputs to measure a 3-wire Pt100 temperature sensor and a 0-100mV analog irradiance sensor.

Figure 1: PV-MON

What is in the box?

When you open the box make sure following items are included:

- PV-MON-LV or PV-MON-HV
- 5 connector endcaps (already mounted)

When anything is missing, make sure you contact your supplier.

Models

There are 2 models of the PV-MON:

RR-1723-HV (or PV-MON-HV): High Voltage (1500V, 30A DC) RR-1723-LV (or PV-MON-LV): Low Voltage (60/100/200V, 30A, DC)

When your PV-MON is customized for different voltage and/or current ranges this is indicated on the instrument label between brackets [Vmax/Imax]:

Mounting

The PV-MON needs to be mounted close to the PV-string. The device is suitable for outdoor usage. **However, protect it always from direct rain, sand and direct sunlight**.

The communication connectors need to be facing downward.

Figure 2: correct mounting of the PV-MON, the communication connectors (PWR/COM) should point downwards.

The dimensions can be found in appendix A.

Wiring

The PV-string or PV-Module should be connected to the short red and black cables with MC-4 connectors, these are labelled 'IN'. The Inverter is connected to long red and black cables with MC-4 connectors, these are labelled 'OUT'.

All connectors used are A-coded M12.

The PWR/COM labeled connectors are two 5 pin M12 A-coded connectors for power and communication. The male connector must be used to power the device.

The female connector can be used to connect a second PV-MON unit. When the second connector is not used, make sure the weather protective cap is installed.

The pinout of the communication connector is shown in Table 1:

Pin	Function	Standard cable color	
1	DC Power positive 9 – 40V	Brown	
2	DC Power ground	White	
3	RS485-A (+)	Blue	
4	RS485-B (-)	Black	
5	Not connected	Gray	

Table 1: PWR/COM pinout

On the PV-MON, you find 3 more connectors:

- **DIG**: Do not use!

- RTD: Connect to an Pt100 RTD element

- **IRR**: Connect to an analog irradiance sensor (0..100mV)

The pinout of both female M12 RTD and IRR connectors can be found in Table 2 and Table 3. Please note that the 3-wire Pt100 connections on both connectors are interconnected. Only one Pt100 sensor is supported.

Pin	Function	Standard cable color	
1	N.C.	White	
2	PT100-A	Green	
3	PT100-B	Yellow	
4	PT100-B	Gray	
5	N.C.	Brown	
6	Analog ground (do not use)	Pink	
7	N.C.	Blue	
8	N.C.	Red	

Table 2: RTD connector pinout

Pin	Function	Standard cable color	
1	N.C.	White	
2	PT100-A	Green	
3	PT100-B	Yellow	
4	PT100-B	Gray	
5	N.C.	Brown	
6	Analog ground (do not use)	Pink	
7	Positive input (0100mV)	Blue	
8	Negative input (0100mV)	Red	

Table 3: IRR connector pinout

Operation

The PV-MON is controlled by means of MODBUS-RTU. The Modbus address of the unit is fixed and equal to the last two digits of the serial number.

Figure 3: Modbus address is equal to the last 2 digits of the serial number. In this case 185

Communication parameters are default set to:

Baudrate: 9600, No Parity, 1 Stopbit

MODBUS Registers

The Modbus registers that are used in the PV-MON can be found in Appendix B.

Specifications

The specifications of the PV-MON are shown in Table 4.

Operating Temperature	-20°C +60°C
Input power	842V DC (24VDC nominal)
Galvanic isolation	2 kV
Interface	Isolated RS485 (MODBUS-RTU)
Serial Baudrate	9600, 19200, 38400, 115200
Internal ADC	24bits
Voltage	
Range Resolution Accuracy	60V, 100V, 200V or 1500V 1 mV ± (0.15% reading + 0.05% range)
Current	
Range Resolution Accuracy	30A 1 mA ± (0.15% reading + 0.05% range)
RTD (pt100)	
Range Resolution Accuracy	150 Ω 0.1 Ω ± (0.05% reading + 0.003% range)
Irradiance (0100mV)	
Range Resolution Accuracy	100mV 1 μV ± (0.05% reading + 0.003% range)

Table 4: Specifications

Contact

For questions, please visit www.pvblocks.com or contact us directly by email or phone:

ReRa Solutions BV	
Address	Toernooiveld 300 6525 EC Nijmegen The Netherlands
E-mail	info@rerasolutions.com
Website	www.pvblocks.com

Appendix A - Dimensions

Figure 4: All dimensions in mm

Appendix B - Modbus registers

Register name	Comment	Register Type	R/W	Modbus Address
VOLTAGE	Voltage [mV]	32 bit Unsigned	R	102
CURRENT	Current [mA]	32 bit Unsigned	R	104
PT100	10 x Pt100 resistance [Ω]	32 bit Unsigned	R	106
MILLIVOLT	Analog input value [uV]	32 bit Unsigned	R	108

All values are Big Endian formatted

Appendix C - Configurations

Figure 5: Standard single module connection, please note that the digital pyranometer is not supported at this moment

Figure 6: Standard single module connection

Figure 7: Standard string connection